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Abstract. We use the single-histogram technique to study the critical behavior of the three-state Potts
model on a (random) Voronoi-Delaunay lattice with size ranging from 250 to 8 000 sites. We consider the
effect of an exponential decay of the interactions with the distance, J(r) = J0 exp(−ar), with a > 0, and
observe that this system seems to have critical exponents γ and ν which are different from the respective
exponents of the three-state Potts model on a regular square lattice. However, the ratio γ/ν remains
essentially the same. We find numerical evidences (although not conclusive, due to the small range of
system size) that the specific heat on this random system behaves as a power-law for a = 0 and as a
logarithmic divergence for a = 0.5 and a = 1.0

PACS. 64.60.Fr Equilibrium properties near critical points, critical exponents – 05.10.Ln Monte Carlo
methods – 05.20.-y Classical statistical mechanics

1 Introduction

The randomness in the lattice of statistical spin models
has been studied in order to access the effect of impurities
and dilutions over their critical behavior. It was conjec-
tured by Harris [1] that the sign of the critical exponent
of the specific heat, α, determines whether the system is
affected or not by such a randomness. For positive values
of α, the impure system should have a critical behavior
different from the one of the pure system. For negative
values of α, on the other hand, the critical behavior of the
system should be the same for both cases. In the marginal
case of α = 0, one should not be able to draw any conclu-
sion about changes in the system.

The pure ferromagnetic three-state Potts model has
α = 1/3, hence, from the Harris criterium we expect to
find a different behavior with a random interaction sys-
tem. However, Picco [5] used this model with two types of
interactions (J0 = 1 and J1 = 1/10) randomly and equally
distributed (p = 0.5) and did not find significant differ-
ences from the pure case. In another study [6], a quenched
random interaction between nearest neighbors has been
introduced, where the coupling factor Jij for each pair i, j
is selected from two positive values J and J ′ with respec-
tive probabilities equal to p and 1− p. It was found that
the exponent η(= 2 − γ/ν) does not depend on the dis-
order length, while ν and γ vary continuously with this
type of disorder, satisfying the concept of weak universal-
ity proposed by Suzuki [7].
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In the present work, we investigate the effect of
quenched disorder on the three-state Potts model using
a two dimensional Voronoi-Delaunay network. This kind
of disordered lattice exhibits a random coordination num-
ber that varies from 3 to ∞, depending on the num-
ber of sites. In addition, the distance r between nearest
neighbors changes randomly from site to site. This ge-
ometrical feature is incorporated in our model by using
a coupling parameter that is an exponential function of
r, J(r) ∝ exp(−ar), with a > 0. In a previous work,
we observed that the two-dimensional ferromagnetic Ising
model with the same coupling mechanism and the same
lattice displays critical behaviors for α, β and ν that are
independent of the value of a and are the same as those
of the pure system [8]. Here we extend this analysis to the
three-state ferromagnetic Potts model.

2 Model and simulation

The Voronoi construction or tessellation for a given set of
points is defined as follows. N points are randomly placed
in a square with side lengths equal to N1/2. Then, for each
point we determine the polygonal cell consisting of the re-
gion closer to this point than to any other. The points
whose cells share an edge are considered neighbors. The
dual lattice (Delaunay’s) is composed by the vertices of
these polygons. The lattice obtained by linking the neigh-
bor sites is the Voronoi network.
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The Hamiltonian for the three-state ferromagnetic
Potts model is given by

−KH =
∑
〈i,j〉

Jijδ(σi − σj),

where K = 1/kBT , T is the temperature, kB is the
Boltzmann constant and δ is the Dirac’s delta. The sum-
mation is performed over all pair of neighbors in the
Voronoi’s network and the spins can take values in the
set {1, 2, 3}. We assume that

Jij = J(ri − rj) = J0 exp(−a|ri − rj |),
where J0 is a dimensionless and positive interaction factor,
ri and rj are the position vectors of the sites i and j,
respectively, and a ≥ 0 is a model parameter.

For each grid size, we use the single-cluster algo-
rithm [10] to simulate the system in the vicinity of the
phase transition, i.e., with K = KCmax , to determine the
system finite size behavior.

The value of KCmax is determined in the following
way. We find the first estimate K0 as the point of max-
imum specific heat obtained in the curve (specific heat
against K) constructed by simulations with K varying.
The value of K0 is used to perform from R = 10 to 20
independent simulations with 106 MC steps each, from
which, using the single histogram algorithm [11], we con-
struct a series of curves of C against K. We then average
over all of these curves in order to find the specific heat
curve as

C(K) = (1/R)
R∑
i=1

C(i)(K), (1)

where C(i)(K) = K2N(〈e2〉K − 〈e〉2K) is computed using
the single-histogram with the results of simulation i. Fi-
nally, we obtain, from the average curve, the maximum
value of the specific heat, Cmax, and its abscissa KCmax .

In order to estimate the ratios β/ν and γ/ν, we use the
fact that the magnetization at the inflection point and the
susceptibility should scale, respectively, as

|〈M〉|inf = L−β/νf(tL1/ν) ∝ L−β/ν, (2)

χmax(L) = χ(KCmax(L), L) = ALγ/ν , (3)

and that∣∣∣∣ d
dK
〈|M |〉

∣∣∣∣
max

= L−β/ν+1/νf ′(tL1/ν) ∝ L(1−β)/ν. (4)

Hence, the logarithmic derivatives should scale as∣∣∣∣ d
dK

ln〈|M |〉
∣∣∣∣
max

=
∣∣∣∣ 1
|M |

d
dK
〈|M |〉

∣∣∣∣
max

∝ L1/ν , (5)

and∣∣∣∣ d
dK

ln〈|M2|〉
∣∣∣∣
max

=
∣∣∣∣ 1
|M2|

d
dK
〈|M2|〉

∣∣∣∣
max

∝ L1/ν , (6)

and so we can get a good estimate of ν from their scaling
behavior. Finally, from finite size scaling arguments we
can also predict that the specific heat should scale as

Cmax(L) = B0 +B1lnL. (7)

2.5 3.0 3.5 4.0 4.5
ln(L)

−0.9

−0.8

−0.7

−0.6

−0.5

ln
(M

)

Fig. 1. Logarithmic plots of magnetization (ln(M)) versus
ln(L) for a = 0.0 (circles), 0.5 (squares) and 1.0 (diamonds).
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Fig. 2. Logarithmic plots of susceptibility (ln(χ)) versus ln(L)
for a = 0.0 (circles), 0.5 (squares) and 1.0 (diamonds).

3 Results and conclusions

We study the critical behavior of the Potts model for
three values of a (a = 0.0, 0.5 and 1.0). For each value
of a, we apply the finite size scaling technique [9] to-
gether with the single-histogram algorithm. We perform
the same procedure for systems with different number of
sites N = 250, 500, 1 000, 2 000, 4 000, and 8 000. The
critical temperature for infinite size system is estimated
by using the fourth-order magnetization (Binder) cumu-
lant and we find the critical values KC = 0.607, 1.035 and
1.959 and U∗ = 0.606, 0.615 and 0.623, corresponding to
a = 0.0, 0.5 and 1.0, respectively.

In Figure 1 we show a log-log plot of M against
L(= N1/2) for a = 0.0, 0.5 and 1.0. By linear fitting
each of these plots and using equation (2), we obtain
β/ν = −0.133, −0.118 and −0.106, respectively. The er-
rors in these measurements are in order of ten percent,
which is true also for the plots of the other figures. This
is a consequence of the small range of the system size.

In Figure 2 we show the plot of χM against L also in
logarithmic scale, from which we obtain the values of the
exponent γ/ν = 1.764, 1.751 and 1.754 for a = 0.0, 0.5
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Fig. 3. Plots of ln
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versus ln(L) for a = 0.0

(circles), 0.5 (squares) and 1.0 (diamonds).
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Fig. 4. Plots of ln
��� d

dK ln〈|M2|〉
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max

�
versus ln(L) for a = 0.0

(circles), 0.5 (squares) and 1.0 (diamonds).

and 1.0, respectively. As in [6], we observe that both γ
and ν vary with a while the ratio γ/ν remains essentially
the same.

Figures 3 and 4 show the plots of the logarithmic
derivatives (5) and (6) against lnL. The slopes of the
curves produce the estimates for 1/ν, from which we get
the values ν1 = 0.840, 0.934 and 1.060 and ν2 = 0.841,
0.934 and 1.061 for a = 0.0, 0.5 and 1.0 respectively.

In Figure 5 we show the plots of Cmax versus lnL for
values of a = 0.0, 0.5 and 1.0. We observe that the curves
for a = 0.5 and a = 1.0 can be well fitted by a straight
line while the curve for a = 0.0 can not. The least-squares
fits to data give the estimates B0 = −0.818 and 0.956 and
B1 = 1.464 and 0.506 for a = 0.5 and 1.0 respectively.
Figure 5 also contains the exponential fittings of Cmax

versus lnL. From this figure, we can conjecture that, in
the case of a = 0.0, the specific heat behaves like a power-
law of L. In order to provide a quantitative support for
this argument, we present in Table 1 the sum of the square
errors obtained by the linear regressions (first row) and by
the exponential fittings (second row) of CmaxlnL.
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Fig. 5. Plots of Cmax versus ln(L) for a = 0 (circles), 0.5
(squares) and 1.0 (diamonds). Also shown are the linear (solid
lines) and exponential (dashed-lines) fittings to the data.

Table 1. Total square residuals of linear and exponential re-
gressions of CmaxlnL data.

a 0.0 0.5 1.0

Linear 1.262949e-01 6.017198e-03 7.392830e-04

Exponential 6.369170e-03 1.474494e-02 3.294589e-03

Table 2. Theoretical and computed values of the critical
exponents.

β γ ν β/ν γ/ν

2d-Potts (q = 3) 1/9 13/9 5/6 2/15 26/15

a = 0.0 0.112 1.482 0.840 0.133 1.764

a = 0.5 0.110 1.635 0.934 0.118 1.751

a = 1.0 0.112 1.859 1.060 0.106 1.754

Table 2 contains our numerical results in a condensed
form. From the analysis of this data, we conclude that the
randomness, which is introduced here through the geom-
etry of the Voronoi-Delaunay lattice, changes the critical
behavior of the system. This can be clearly observed by
the change in the values of γ and ν. The value of β is not
affected by the randomness. The analysis of the behavior
of the exponent α is not conclusive since it is difficult,
due to the limited number of data points, to distinguish
the trend (power-law or logarithmic) in the curve of Cmax

versus L. As already mentioned, the fittings shown in Fig-
ure 5 provide some indication that the specific heat is a
power-law of L for a = 0.0, and varies as a linear function
of lnL for a = 0.5 and 1.0. This conjecture needs to be
checked, however, for values of L > 8 000.
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